OCR Maths S1

Topic Questions from Papers

Representation of Data
Answers

1 (i)	Median 8 Quartiles 6, 24	$\begin{array}{ll} \hline \text { B1 } & \\ \text { B2 } & 3 \end{array}$	B1 for each Allow $\mathrm{IQR}=24-6$
(ii)	Extreme values/skew distort mean or 35 mentioned	B1 1	Accept just "data skewed". Not "anomaly"
(iii)	Advantage: retains data values Disadv: harder to read (eg) median harder to compare distr's visual comparison harder	B1 B1 2	Not "Can be shown on same diag"

2 (i) Read at 300 or 300.25 and 900 or 900.75 44.5 to 45.5 and 69 to 69.9 IQR 23.5 to 25.4	M1 A1 A1 3	or 44-46 and 68-70 incl. dep A1 Must look back, see method. No wking, ans in range: M1A1A1
$\begin{aligned} & \text { (ii) } 0.6 \text { or } 60 \% \\ & \text { CF } 720 \\ & 63 \text { to } 64 \end{aligned}$	$\begin{array}{ll} \text { M1 } & \\ \text { M1 } & \\ \text { A1 } & 3 \end{array}$	Seen or implied Seen or implied $55.5 \text { to 56: SC B1 }$
$\begin{aligned} & \text { (iii) } 1200-860 \\ & =340 \end{aligned}$	$\begin{array}{ll} \text { M1 } \\ \text { A1 } \end{array}$	$\begin{aligned} & \text { Allow } 1200 \text { - }(850 \text { to } 890) \\ & 310 \text { to } 350 \end{aligned}$
$\begin{aligned} & \text { (iv) } 340 / 1200 \\ & 0.283^{5} \\ & =0.00183 \end{aligned}$	M1 M1dep A1 3	their (iii)/1200 [their (iii)/1200] ${ }^{5}$ exactly Allow 0.00114 to $0.00212 \geq 2 \mathrm{sfs}$
		${ }^{340} \mathrm{C}_{5} 1^{1200} \mathrm{C}_{5} \ldots \mathrm{M} 1$
(v) Incorrect reason or ambiguity: B0B0. Otherwise: Too low, or should be 26 or 27 or 2 or 3 higher	B2 2	eg $\mathrm{IQR}=55-35=20$ or $\mathrm{IQR}=$ value >27 or new info' implies straight line: B1 or originally, majority in range $35-55$ are at top of this range: B 1
	13	

(Q5, June 2005)

3 (i)	Midpoints attempted $\quad \geq 2$ classes $\sum x f / 100$ or $\sum x f / \sum f$ attempted x within class, not class width Mean $=27.2$ (to 3 sfs \quad (not 27.25) art 27.2 from fully correct wking	M1 M1 A1 M1 M1 A1 6	Correct (149.5) 2720.5/100 27.2 240702.25 40.82 allow class width	With 150 2725/100 27.25 242050 40.96 or 2nd M1	$\begin{aligned} & \underline{\underline{T o t}=} \\ & \underline{2000} \\ & \text { Allow } \\ & \text { Ms } \\ & \text { \& poss } \\ & \text { As } \end{aligned}$
(ii)	Recog LQ in $1^{\text {st }}$ class $\underline{\&} \mathrm{UQ}$ in $3^{\text {rd }}$ class Subtract $\mathrm{IQR}=23 \text { or } 24 \text { or } 25$	M1 M1 A1 4	both nec' y dep B1or M1 integer. dep M2		
$\begin{array}{r} \text { (iii)(a) } \\ \text { (b) } \\ \text { (c) } \\ \hline \end{array}$	Increase Increase No change	 B1 $\mathbf{1}$ B1 $\mathbf{1}$ B1 $\mathbf{1}$	Ignore "probably" etc		
Total		13			

(Q7, June 2006)

4 (ia)	W \& Y oe	B1 1	
b	X oe	B1 1	
ii	Geo probs always decrease or Geo has no upper limit to x or $x \neq 0$	B1 1	Geo not fixed no. of values diags have fixed no of trials not Geo has + ve skew
iii	W Bin probs cannot fall then rise or bimodal	B1 B1dep 2	indep allow Bin probs rise then fall
Total		5	

5 (i)	$\begin{aligned} & \mathrm{Med}=2 \\ & \mathrm{LQ}=1 \text { or } \mathrm{UQ}=4 \\ & \mathrm{IQR}=3 \end{aligned}$	$\begin{array}{ll} \hline \text { B1 } & \\ \text { M1 } \\ & \\ \text { A1 } & 3 \end{array}$	```cao or if treat as cont data: read cf curve or interp at 25 & 75 cao```
ii	Assume last value $=7$ (or eg 7.5 or 8 or 8.5) $x f$ attempted ≥ 5 terms 2.6 or 3 sf ans that rounds to 2.6 $x^{2} f$ or $\left.\quad . x-m\right)^{2} f \quad \geq 5$ terms $V\left(x^{2} f / 100-m^{2}\right)$ or $V\left((. x-m)^{2} f\right) / 100$ fully correct but $\mathrm{ft} m$ 1.6 or 1.7 or 3 sf ans that rounds to 1.6 or 1.7	B	stated, \& not contradicted in wking eg 7-9 or 7,8, 9 Not just in wking allow "midpts" in $x f$ or $x^{2} f$ dep M3 penalize > 3 sfs only once
iii	Median less affected by extremes or outliers etc (NOT anomalies)	B1	or median is an integer or mean not int. or not affected by open-ended interval general comment acceptable
iv	Small change in var'n leads to loe change in IQR UQ for W only just 4 , hence IQR exaggerated orig data shows variations are similar	B1	for Old Moat LQ only just 1 \& UQ only just 3 oe specific comment essential
v	OM \% (or y) decr (as x incr) oe Old Moat	$\begin{array}{ll} \text { B1 } \\ \text { B1 } & 2 \end{array}$	ranks reversed in OM or not rev in W NIS
Total		13	

(Q8, Jan 2007)

6 (i)	$\begin{aligned} & 1991 \\ & 100000 \text { to } 110000 \end{aligned}$	B1 ind B1 ind 2	Or fewer in 2001 Allow digits100 to 110
iia	$\begin{aligned} & \text { Median }=29 \text { to } 29.9 \\ & \text { Quartiles } 33 \text { to } 34,24.5 \text { to } 26 \\ & =7.5 \text { to } 9.5 \\ & 140 \text { to } 155 \\ & 23 \text { to } 26.3 \% \end{aligned}$	B1 M1 A1 M1 A1 5	Or one correct quartile and subtr NOT from incorrect wking $\times 1000$, but allow without Rnded to 1 dp or integer 73.7 to 77% : SC1
b	Older Median (or ave) greater $\quad\}$ \% older mothers greater oe\} \% younger mothers less oe\}	$\begin{array}{ll} \text { B1 } & \\ \text { B1 } & \\ \text { B1 } & 3 \end{array}$	Or 1991 younger Any two Or 1991 steeper so more younger: B2 NOT mean gter Ignore extra
Total		10	

(Q5, June 2007)

(Q8, Jan 2008)

8 (i)	$\begin{aligned} & 25 / 10 \\ & =2.5 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } 2 \end{aligned}$	Allow ${ }^{25} /_{(9 \text { tol0) }}$ or 2.78: M1
ii	$\begin{aligned} & (19.5,25) \\ & (9.5,0) \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } 2 \end{aligned}$	Allow (24.5, 47) Both reversed: SC B1 If three given, ignore $(24.5,47)$
iii	Don't know exact or specific values of x (or min or max or quartiles or median or whiskers). Can only estimate (min or max or quartiles or median or whiskers) oe Can't work out (.....) Data is grouped oe	B1 1	Exact data not known Allow because data is rounded
Total		5	

9 (i)	$\begin{aligned} & \hline 68 \\ & 75-59 \\ & =16 \\ & \hline \end{aligned}$	B1 M1 A1 3	attempt $6^{\text {th }} \& 18^{\text {th }}$ or $58-60,74-76 \&$ subtr must be from $75-59$
(ii)	Unaffected by outliers or extremes (allow less affected by outliers) sd can be skewed by one value	B1 1	NOT: ... by anomalies or freaks easier to calculate
(iii)	Shows each data item, retains orig data can see how many data items can find (or easier to read) mode or modal class can find (or easier to read) frequs can find mean Harder to read med (or Qs or IQR) Doesn't show med (or Qs or IQR) B\&W shows med (or Qs or IQR) B\&W easier to compare meds	B1 $\text { B1 } 2$	NOT: shows freqs shows results more clearly B\&W does not show freqs NOT: B\&W easier to compare B\&W shows spread or variance or skew B\&W shows highest \& lowest Assume in order: Adv, Disadv, unless told Allow disadv of B\&W for adv of S\&L $\&$ vice versa Ignore extras
(iv)	$\mathrm{m}=68.1$ NOT by restart $\mathrm{sd}=9.7$ (or same) NOT by restart	$\begin{array}{ll} \text { B1 } & \\ \text { B1 } & 2 \end{array}$	Restart mean or mean \& sd: 68.1 or $68.087 \& 9.7$ or 9.73 B1 only
Total		8	

(Q5, Jan 2009)

10 (i) (a)	$\begin{array}{lr} \text { Use of correct midpts } & \\ \Sigma l f \div \Sigma f & (=706 \div 40) \\ =17.65 & \\ \Sigma l^{2} f & (=13050.5) \\ \sqrt{\frac{13050.5 "}{40}-17.655^{22}} & (=\sqrt{ } 14.74) \\ =3.84(3 \mathrm{sfs}) & \end{array}$	B1 M1 A1 M1 M1 A1 6	11,14,18,25.5 l within class, \geq three lf seen [17.575,17.7] \geq three $l^{2} f$ seen $\div 40,-$ mean $^{2}, \sqrt{ }$. Dep >0. $\sum(1-17.65)^{2 f}$, at least $3 \mathrm{M} 1, \div 40, \sqrt{ }$ M1,3.84 A1. $\div 4 \Rightarrow \max$ B1M0A0M1M0A0
(b)	mid pts used or data grouped or exact values unknown oe	B1 1	not "orig values were guesses"
(ii)	$\begin{aligned} & 20 \div 5 \\ & =4 \end{aligned}$	$\begin{array}{ll} \text { M1 } \\ \text { A1 } & 2 \end{array}$	condone $20 \div[4,5]$ or ans 5
(iii)	$\begin{aligned} & 20.5^{\text {in }} \text { value requ'd and } \\ & 1^{\text {st }} \text { two classes contain } 14 \text { values } \\ & 16-20 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { B1 } 2 \end{aligned}$	condone 20^{Th} oe or third class oe
(iv) (a)	increase	B1 1	
(b)	decrease	B1 1	
Total		[13]	

(Q6, Jan 2013)

12 (i)	590	B1 1	Allow approximately 590
ii	Graph horiz (for $\geq 55 \mathrm{mks}$) oe	B1 1	or levels off, or grad $=0$, grad not increase Allow line not rise, goes flat, plateaus, stops increasing, not increase, doesn't move
iii	39 to 41	B1 1	
iv	Attempt read cf at 26 or 27 Double \& attempt read x Max C=29 to 31.5	M1 M1 A1 3	eg $26 \mathrm{mks} \rightarrow 150^{\text {it }} \quad 27 \mathrm{mks} \rightarrow 180^{1 \mathrm{~h}}$ eg read at $\mathrm{cf}=300$ or 360 Indep of first M1 May be implied by ans Answer within range, no working, M1M1A1 32 without working, sc B1
v	$\begin{aligned} & \mathrm{LQ}=25.5-26.5 \text { or } \mathrm{UQ}=34-35.5 \\ & \mathrm{IQR}=8-10 \end{aligned}$ (German) more spread	M1 A1 B1ft 3	M1 for one correct quartile dep ≥ 1 correct quartile or no working or less consistent, less uniform, less similar, more varied, more variable, greater variance, more spaced apart, further apart ft their IQR; must be consistent with IQR Correct comment with no working: M0A0B1
Total		9	

13 (i)	$\begin{array}{\|l\|} \hline 38 \\ 61 \\ \hline \end{array}$	$\begin{array}{ll} \hline \text { B1 } & \\ \text { B1 } & 2 \end{array}$	Reversed: B1B0	
ii	Paper 2 Higher median or curve is to right	B1 B1dep 2	Indep of reason or similar Higher average or mean or midpoint Paper 2: half ≤ 61, cf paper 1 : half ≤ 38 Paper 1: more students scored lower marks (or lower than eg 40)	Ans "Paper 1", ignore reason: B0B0 unless reversed in (i) More scored higher mks Highest \& lowest mks are higher For each cf, the corresponding mark is higher in p2. None get 0-10 Some get 100 Eg 25 scored > 69 in p1, cf 65 scored > 69 in p2 NOT Marks are higher NOT marks seem higher NOT everyone gets higher mks NOT Curve steeper Ignore irrelevant or incorrect SC: If reversed in (i): (ii) p1 because median higher B1B1ft
iii	55,25 73, 46 Paper $1 \mathrm{IQR}=30$ Paper $2 \mathrm{IQR}=27$ Suggestion correct or p2 less varied	M1 A1 A1 B1f indep	M1 one pair of quartiles p2 more consistent or less spread out Allow "p2 has smaller range (or smaller variance") if IQRs found "It" is less varied: assume p2: B1	Allow $55 \pm 1,25 \pm 1 \quad$ Not necessarily subtracted $73 \pm 1,46 \pm 1$ 20 ± 1 27 ± 1 p1 more varied or more spread out or less consistent Little difference or similarly varied NOT p2 IQR smaller than p1 unless also says less varied oe If quartiles found but not IQRs: max M1A0A0B1 If no quartiles calculated can still score B1 Steeper curve alone M0A0A0B0 If IQRs wrong, with $\mathrm{p} 1<\mathrm{p} 2$, ft "suggestion wrong": B1f Ignore irrelevant or incorrect
iv	$37(\pm 3)$	B2 2	B1 for $163(\pm 3)$	Not necessarily integer. B1 for 78-80 mks for min grade A on p2 SC: ans 105-110: B1 (from p1 10 mks hier instead of lower)
v	$\begin{aligned} & 37.5 \\ & 28.2 \end{aligned}$	$\begin{array}{ll} \hline \text { B1 } & \\ \text { B1 } & 2 \\ \hline \end{array}$	cao or sd the same	NOT eg 37.51 Ignore all working
Total		12		

14 (i)	Method is either: Just $4 \div 3$ or $\frac{4}{3}$ or: Use of ratio of correct frequencies AND ratio of widths (correct or 4 and 2)			
	$5.6 \times \frac{4}{28} \times \frac{5}{3}$ or $0.8 \times \frac{5}{3}$ or $\left(5.6 \div \frac{28}{5}\right) \times \frac{4}{3} \quad$ or $\frac{4}{3}$ or $4 \div 3 \quad$ oe $=1 \frac{1}{3}$ or $\frac{4}{3}$ or $1.33(3 \mathrm{sf})$ oe	M2 A1 3	M1 for $5.6 \times \frac{4}{28} \times \frac{4}{2}$ or $0.8 \times \frac{4}{2}$ or $\left(5.6 \div \frac{28}{4}\right) \times \frac{4}{2} \quad$ or $0.8 \times 2 \quad$ oe $\quad(=1.6)$ No wking, ans 1.3: M2A0 Ans 1.6: Check wking but probably M1M0A0	Correct calc'n using 5.6, 28, $4,5,3$ oe: M2 Correct calc'n using 5.6, 28, 4, 4, 2 oe: M1 ie fully correct method: M2 or: incorrect class widths, otherwise correct method: M1 $\frac{4}{3}$ correctly obtained (or no wking) then further incorrect: M1M0A0 Use of ratio of widths OR freqs but not both: M0 eg $5.6 \times \frac{4}{28}(=0.8)$ or $5.6 \times \frac{3}{5}(=3.36): \quad$ M0 $\frac{4}{2}=2: \text { M0M0A0 }$
ii	25 or 26 or 25.5 Med is $21^{\text {st }}$ (or $22^{\text {nd }}$ or $21.5^{\text {th }}$) in 31-35 class or "25-4" Can be implied by calc' n Med > 33 or "more than"	B1 B1 $\text { B1 } 3$	or $25 \& 26$ or med in last ≈ 7 in class or $33 \approx 14^{\text {th }}$ in class or $33 \approx 18^{\text {th }}$ in whole set Can be implied by diagram indep	May be implied, eg by 21 or 22 or 21.5 Calc'ns need not be correct but need to contain relevant figures for gaining B1B1 $\text { The " } \approx \text { " sign means } \pm 2$ Alternative Method: Ignore comment on skew NB Use EITHER the main method OR the Alternative Method (above), not a mixture of the two. Choose the method that gives most marks.
iii	≥ 3 mid-pts attempted $\Sigma f x \div 50$ attempted $\quad\left(=\frac{1819}{50}\right)$ $=36.38$ or $36.4(3 \mathrm{sf})$ $\Sigma f x^{2}$ attempted (= 68055.5) $\begin{aligned} & \begin{array}{lr} \sqrt{\frac{68055.5}{50}-\left(\frac{1819}{50}\right)^{2}} & \text { or } \sqrt{1361.11-36.38^{2}} \\ (=\sqrt{37.6056}) \end{array} \\ & =6.13(3 \mathrm{sfs}) \end{aligned}$ Alt for variance: $\begin{array}{ll} \Sigma f(x-\bar{x})^{2}(=1880.28) & \text { M1 } \\ \sqrt{\frac{1880.28}{50}} & \text { M1 } \\ =6.13(3 \mathrm{sf}) & \text { A1 } \end{array}$	M1 A1 M1 M1 A1 6	seen or implied ≥ 3 terms. or 36 with correct working ≥ 3 terms. completely correct method except midpts \& ft their mean, dep not $\sqrt{ }$ (neg)	Not nec'y correct values ($29,33,40.5,53$) Allow on boundaries. Not class widths Allow on boundaries. Not class widths (3364, 30492, 22963.5, 11236) Allow class widths for this mark only NB mark is not just for "- mean ${ }^{2}$ ", unlike q5(iii) $\Sigma(f x)^{2}:$ M0M0A0 If no wking for $\Sigma f x^{2}$, check using their x and f If no wking or unclear wking: full mks for each correct ans for incorrect ans: $\begin{array}{ll} 35.8 \leq \mu \leq 36.9 & \text { M0M1A0 } \\ 6.0 \leq \text { sd } \leq 6.25 & \text { M1M0A0 } \end{array}$
iv	(a) Decrease (b) Increase (c) Same (d) Same	$\begin{aligned} & \text { B1B1 } \\ & \text { B1B1 } 4 \end{aligned}$	Ignore other, eg "slightly" or "probably"	Ignore any comments or reasons, even if incorrect
Total		16		

15	(i)	(a)	$\left(\frac{6}{3}=\right) 2$	$\begin{aligned} & \text { B1 } \\ & {[1]} \end{aligned}$	$\left(\frac{6}{9} \times 3=\right) 2$	
	(i)	(b)	$\begin{aligned} & 2 / 6 \times 2 \\ & =2 / 3 \text { oe or } 0.667 \text { or } 0.67 \text { or } 0.7 \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1[2] } \end{gathered}$	Allow ${ }^{2} 5 \times 2$ or ans 0.8 for M1	Can be implied, eg $\frac{1}{3}=0.3$, ans 0.6 : M1A0 Allow 0.66 or 0.666
	(ii)		$\begin{aligned} & \hline(3.5,6) \\ & (0.5,0) \text { or }(6.5,15) \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & {[2]} \end{aligned}$	Ignore incorrect	$(6,3.5)$ AND $(15,6.5):$ B 1
	(iii)	(a)	$\begin{array}{ll} \frac{\Sigma x f}{21} & \\ =5.43(3 \mathrm{sf}) & \text { or } \frac{114}{21} \text { or } \frac{38}{7} \text { oe } \\ \frac{\Sigma x^{2} f}{21} & \text { or } \frac{817.5}{21} \text { or } 38.9 \ldots \\ & \\ - \text { " } 5.43 "{ }^{2} & \\ (\sqrt{ } 9.4592 \ldots) & \\ =3.08(3 \mathrm{sfs}) & \end{array}$	M1 A1 M1 M1 A1 [5]	Allow x within classes, incl end pts then $\div 5$: M0A0 Allow x within class, incl end pt $\div 5$: M0 dep +ve result; done before $\sqrt{ }$; not $-\left(\bar{x}^{2} \div \ldots\right)$	≥ 2 non-zero terms correct ft their x ≥ 2 non-zero terms correct ft their x Calc 4 values of $(x-\bar{x})^{2}$ or $(x-\bar{x})^{2} f$ or $(11.8,0.184,6.61,50)$ or $(70.5,1.65,26.4,100)$ or 199 M1 $\frac{\Sigma(x-\bar{x})^{2} f}{21}$ fully correct method M1
	(iii)	(b)	Actual values or exact hours unknown oe Don't have raw data. oe or measured to nearest hour oe	$\begin{aligned} & \text { B1 } \\ & {[1]} \end{aligned}$	or Data given in classes or grouped oe or Data evenly distributed in classes oe	Mid-points or medians or averages of class boundaries used oe

(Q5, Jan 2012)

