OCR Maths S1 Topic Questions from Papers Representation of Data Answers

PhysicsAndMathsTutor.com

1	(i)	Median 8 physicsandn	nasthstute	pr.com
		Quartiles 6, 24	B2 3	B1 for each Allow $IQR = 24 - 6$
	(ii)	Extreme values/skew distort mean	B1	Accept just "data skewed". Not "anomaly"
		or 35 mentioned	1	
	(iii)	Advantage; retains data values Disadv: harder to read (eg) median harder to compare distr's visual comparison harder	B1 B1	Not "Can be shown on same diag"

(Q2, Jan 2005)

2 (i) Read at 300 or 300.25 and 900 or 900.75	M1		or 44-46 and 68-70 incl.
44.5 to 45.5 and 69 to 69.9	A1		
IQR 23.5 to 25.4	A1	3	dep A1 Must look back, see method.
			No wking, ans in range: M1A1A1
(ii) 0.6 or 60%	M1		Seen or implied
CF 720	M1		Seen or implied
63 to 64	A1	3	
			55.5 to 56: SC B1
(iii) 1200 – 860	M1		Allow 1200 – (850 to 890)
= 340	A1	2	310 to 350
(iv) 340/1200	M1		their (iii)/1200 Σ μ
0.283^5	M1dep		[their (iii)/1200] ⁵ exactly
= 0.00183	A1	3	Allow 0.00114 to $0.00212 \ge 2$ sfs
			$^{340}C_5/^{1200}C_5$ M1
(v) Incorrect reason or ambiguity: B0B0.			eg IQR = 55–35 = 20 or IQR = value >27
Otherwise:			
Too low,			or new info' implies straight line: B1
or should be 26 or 27 or 2 or 3 higher	B2	2	or originally, majority in range 35 – 55 are at
			top of
			this range: B1
	13		

(Q5, June 2005)

÷

÷

3 (i)	Midneinte etterrente d	M1			<u>Correct (149.5)</u>	With 150	$\underline{\text{Tot}} =$
	$\sum xf / 100 \text{ or } \sum xf / \sum f \text{ attempted} \ge 2 \text{ terms}$	M1 M1					<u>2000</u>
	x within class, not class width Mean = 27.2 (to 3 sfs) (not 27.25)				2720.5/100	2725/100	Allow
	art 27.2 from fully correct wing	Imath	nstutor	c.c	om		Ms
	$\sum_{i=1}^{\infty} x^2 f \text{or} \sum_{i=1}^{\infty} x - \overline{x}^2 f \ge 2 \text{ terms}$ $\sqrt{(\sum_{i=1}^{\infty} x^2 f / 100 - \overline{x}^2)} \text{ or } \sqrt{((\sum_{i=1}^{\infty} x - \overline{x}^2)^2 f / 100)} \text{ or }$	M1					& poss As
	$\sum f$	M1			27.2	27.25	
	runy con method, not yneg	A1		6	240702.25	242050	
	= 40.5 to 41.1 (3 sfs)				40.82	40.96 for 2nd M1 or	nlv
(ii)	Recog LQ in 1 st class <u>&</u> UQ in 3 rd class	B1					<u></u>
	Graph:Interp:Attempt $25(.25)^{th}$ valueLQ = 3.0 to 4.3						
	Attempt $75(.75)^{\text{th}}$ value UQ = 27 to 29	M1			both nec'y		
	Subtract	M1			dep B1or M1		
	IQR = 23 or 24 or 25	A1	4	<u>ا</u>	integer. dep M2		
(iii)(a)	Increase	B1	1	1			
(b)	Increase	B1	1	1	Ignore "r	probably" etc	
(c)	No change	B1	1	1	6 1	2	
Total			13				

(Q7, June 2006)

4 (ia)	W&Y oe	B1 1	
b		B1 1	
	X oe		
ii	Geo probs always decrease or Geo has no upper limit to x or $x \neq 0$	B1 1	Geo not fixed no. of values diags have fixed no of trials not Geo has +ve skew
iii		B1	indep
	W	B1dep	allow Bin probs rise then fall
	Bin probs cannot fall then rise or bimodal	2	
Total		5	

(Q4, Jan 2007)

3500 8x17 5

5 (i)	Med = 2 $LQ = 1 or UQ = 4$	B1 M1		cao or if treat as cont data:
	IQR = 3	A1	3	read cf curve or interp at 25 & 75 cao
ii	Assume last value = 7 (or eg 7.5 or 8 or 8.5)	B1		stated, & not contradicted in wking eg 7-9 or 7,8, 9 Not just in wking
	xf attempted ≥ 5 terms	M1		allow "midpts" in xf or x^2f
	2.6 or 3 sf ans that rounds to 2.6	A1		
	$x^2 f$ or $(x-m)^2 f \ge 5$ terms	M1		
	$\sqrt{(x^2f/100-m^2)}$ or			
	$\sqrt{(x-m)^2 f}/100$ fully correct but ft m	M1		
	1.6 or 1.7 or 3 sf ans that rounds to 1.6 or 1.7 1.6	A1		dep M3
			6	penalize > 3 sfs only once
iii	Median less affected by extremes or	B1	1	or median is an integer or mean not int.
	outliers etc (NOT anomalies)			or not affected by open-ended interval
iv	Small change in var'n leads to lge change in IQR			
1,	UQ for W only just 4, hence IQR exaggerated			for Old Moat LQ only just 1 & UQ only just 3
	orig data shows variations are similar	B1	1	oe specific comment essential
v	OM % (or y) decr (as x incr) oe	B1		ranks reversed in OM or not rev in W
	Old Moat	B1	2	NIS
Total		13		

physicsandmathstutor.com

(Q8, Jan 2007)

6 (i)	1991	B1 ind	Or fewer in 2001
	100 000 to 110 000	B1 ind	Allow digits100 to 110
		2	
iia	Median = 29 to 29.9	B1	
	Quartiles 33 to 34, 24.5 to 26	M1	Or one correct quartile and subtr
	= 7.5 to 9.5	A1	NOT from incorrect wking
	140 to 155	M1	×1000, but allow without
	23 to 26.3%	A1	Rnded to 1 dp or integer 73.7 to 77% : SC1
		5	
b	Older	B1	Or 1991 younger
	Median (or ave) greater }		Any two
	% older mothers greater oe}	B1	Or 1991 steeper so more younger: B2
	% younger mothers less oe}	B1 3	NOT mean gter
			Ignore extra
Total		10	

(Q5, June 2007)

7 (i)	m = 26.5			B1	
	LQ = 22	or 21.5	or 21.75		
	UQ = 39	40	39.5	M1	M1 for either LQ or UQ
	IQR = 17	18.5	17.75	A1 3	A1 must be consistent LQ, UQ & IQR
ii	Ave or overall of	or med or "it" sin	nilar	B1f	or F med (or ave) higher or F mean less
					or M & F both have most in 20s
	Male spread gre	eater or M more v	varied oe	B1f 2	or male range greater
					or more younger F or more older M
iii	Med less (or no	t) affected by ext	reme(s) or	B1 1	oe; not "anomalies"
	Mean (more) af	fected by extrem	e(s)		ignore eg "less accurate"
iv					must consistently decode last or first
	Decode last				
	245/49			M1	
	= 5			Al	
	mean = 205	$5 \dots 2$		Blf	$200 + 5^{*}$
	$\sqrt{(9849/49 - (27))}$	(₄₉) ⁻)		MI	dep v+ve
	= 13.3 (3sfs) or	4\11 D	hysicsandmath	AI Stutor.con	
	sd = 13.3 or 4N	11 P	nyoloodinamaa	OBIL OOI	dep M1 or ans $1/6$; award if not $+200$
	Dagada first				
	$\frac{Decode first}{245 + 200 \times 49}$	vr 10045	B 1		
	$243 \pm 200^{49} \text{ C}$ 10045_{100}	110045	M1		allow $\frac{445}{10}$ or 9.08 seen
	-205		A 1		anow 749 or 7.08 seen
	$\Sigma x^2 = 9849 \pm 400$)×10045-49×400	00		
	$\Delta x = 50151100$	or 206784	9 B1		
	<u></u> 2,,2	01 200701			
	$\sqrt{\frac{-2x^2}{49}} - \overline{x}^2$		M1		dep √+ve
	•				Σx^2 must be: attempt at Σx^2
					>9849
					not involve 9849 ²
					not $(\Sigma x)^2$ eg10045 ² , 445 ²
					\overline{x} must be decoded attempt, eg 9.08
	$= 13.3 \text{ or } 4\sqrt{11}$		A1		
Total				12	

(Q8, Jan 2008)

8 (i) ii	$ \begin{array}{r} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\$	M1 A1 2 B1 B1 2	Allow $^{25}/_{(9to10)}$ or 2.78: M1 Allow (24.5, 47) Both reversed: SC B1 If three given, ignore (24.5, 47)
iii	Don't know exact or specific values of x (or min or max or quartiles or median or whiskers). oe Can only estimate (min or max or quartiles or median or whiskers) oe Can't work out () oe Data is grouped oe	B1 1	Exact data not known Allow because data is rounded
Total		5	

(Q5, June 2009)

9	(i)	68	B1		
		75 – 59	M1		attempt 6 th & 18 th or 58-60, 74-76 & subtr
		= 16	A1	3	must be from 75 – 59
	(ii)	Unaffected by outliers or extremes	B1	1	NOT: by anomalies or freaks
		(allow less affected by outliers)			easier to calculate
		sd can be skewed by one value	cean	dma	thetutor com
		priysi	LSan	uma	
	(iii)	Shows each data item, retains orig data			NOT: shows freqs
		can see how many data items			shows results more clearly
		can find (or easier to read) mode or modal			B&W does not show freqs
		class			
		can find (or easier to read) frequs	B1		
		can find mean			
					NOT: B&W easier to compare
		Harder to read med (or Qs or IQR)			B&W shows spread or variance or skew
		Doesn't snow med (or Qs or IQR) P & W shows med (or Qs or IQP)	D1	D1 0	B&w snows nignest & lowest
		B&W shows filed (of QS of IQK) B &W assign to compare mode	DI	2	Assume in order: Adv. Disadv. unless told
		be weasier to compare meds			Allow disady of B&W for ady of S&I
					& vice versa
					Ignore extras
					-0
	(iv)	m = 68.1 NOT by restart	B1		
		sd = 9.7 (or same) NOT by restart	B1	2	Restart mean or mean & sd:
					68.1 or 68.087 & 9.7 or 9.73 B1 only
То	tal		8	6	

(Q5, Jan 2009)

10 (i) (a	a)	Use of correct midpts	B 1		11,14,18,25.5
		$\Sigma lf \div \Sigma f$ (= 706 ÷ 40)	M1		<i>l</i> within class, \geq three <i>lf</i> seen
		= 17.65	A1		[17.575,17.7]
		$\Sigma l^2 f = (= 13050.5)$	M1		\geq three $l^2 f$ seen
		$\sqrt{\frac{13030.3}{40}} - "17.65"^2$ (= $\sqrt{14.74}$)	M1		$\div 40.$ -mean ² . $\sqrt{.}$ Dep>0.
		$\sqrt{40}$			Σ (1-17.65) ² f, at least 3 M1,÷40, $$
		= 3.84 (3 sis)	A1	6	M1,3.84 A1.
					$\div 4 \Rightarrow \max B1M0A0M1M0A0$
(b)	mid pts used or data grouped			not "orig values were guesses"
		or exact values unknown oe	B 1	1	
(ii)		$20 \div 5$	M1		condone $20 \div [4,5]$ or ans 5
		=4	A1	2	
(iii)		20.5 th value requ'd <u>and</u>			condone 20 th
		1 st two classes contain 14 values	M1		oe
		16 – 20	B 1	2	or third class oe
(iv) (a	a)	increase	B1	1	
(1	b)	decrease	B1	1	
Total			[1.	3]	

(Q2, Jan 2010)

11 (i) Attempt find total area, (even if includes a^2) eg eg tot <u>area</u> = 16cm ² or 16a M1 Trial m	nethods, eg:
$20 \times 1.4a + 10 \times 3.4a + 6 \times 4.6a + 4 \times 2.6a + 10 \times 3a + 30a$ $800/16 (= 50)$ M1	
or $28a+34a+27.6a+10.4a+30a+30a$ $a \times 10 = 50$ $a = 5$ A1 $a = 5$	gives 7×20+17×10+23×6 +
or $20 \times 1.4 + 10 \times 3.4 + 6 \times 4.6 + 4 \times 2.6 + 10 \times 3 + 30$ = 800	M1
or $28+34+27.6+10.4+30+30$ eg tot area = 400 (sos) M1 But no	p of apples = 800 M1
or $7 \times 20 + 17 \times 10 + 23 \times 6 + \dots$ 800/400 (= 2) M1 Hence	a = 5 A1
or 160 <i>a</i> or 160 or 16 or 16 <i>a</i> (if area, not ht) M1 14 <i>a</i> × 20 = 70 × 2 $a = 5$ A1	
) gives $14 \times 20 + 34 \times 10 + 46 \times 6 + =$
$800 \div$ their total (must involve area, not ht) M1den 1600	M1
$e_{g} = 160a = 800 \ 800^{-1}$	a of apples = 800 M1
a=5 A1 MIM1A1 Hence	$a = 5$ $\Delta 1$
	<i>u</i> = 5 <i>m</i>
"Box" \Rightarrow area, "Square" possibly \Rightarrow area But where the correct answer clearly results. NOT "	"1cm – 5" (because may just
from incorrect working eq. $q = 00/167 - 4.8$ come 4	from counting squares)
Four model to $a = 5$ theorem may MIMIAO NIR to	tal $ht = 16$ cm so if 16 seen must
iounded to <i>u</i> = 5, then max with the objective states of the objective states	$\frac{1}{10000000000000000000000000000000000$
	7 be area eg 800/10 may score o
	where the second s
b (II) $\frac{1}{2}$ total area or $\frac{1}{2}$ total no. apples ft their 6(i) B11 Example	pies of correct methods:
400	$(7 \times 20 + 17 \times 10)$ (= 90)
Median is in 50 – 56 class stated or implied M1 $50 + 30$	"90" 6 54
$30 + \frac{1}{2}$	$\frac{1}{23\times6} \times 0 = 34$
	(70+85) (= 45)
Calculate (approx) $\frac{2}{2}$ of way along class $50 + \frac{2}{3}$	$\frac{45^{\circ}}{69} \times 6 = 54$
Contract (FFF) 3 - why many const	09
or $\frac{1}{3}$ of way from top of class M1 400.5	$-(7 \times 20 + 17 \times 10)$ (= 90.5)
50 + "	$\frac{90.5''}{2} \times 6 = 54$
Median = 53.9 to 54 Not eg 54.2 Al Compared and the structure in the struc	23×6 × 0 = 54
Correct ans with nothing incorrect seen:	CLD 40.5
MIMIAI Use of	LD = 49.5
But where the correct answer clearly results eg med	dian = 49.5 + appr $\frac{2}{3} \times 6 = 53.4$
[4] from incorrect working eg a = 800/167 - 4.8 BIMI	A1A0
rounded to a = 5 then max MIMIA0	

(Q6, Jan 2013)

physicsandmathstutor.com

12 (i)	590	B1 1	Allow approximately 590
ii	Graph horiz (for ≥ 55 mks) oe	B1 1	or levels off, or grad = 0, grad not increase Allow line not rise, goes flat, plateaus, stops increasing, not increase, doesn't move
iii	39 to 41	B1 1	
iv	Attempt read cf at 26 or 27 Double & attempt read <i>x</i>	M1 M1	eg 26 mks $\rightarrow 150^{\text{th}}$ 27 mks $\rightarrow 180^{\text{th}}$ eg read at cf = 300 or 360 Indep of first M1 May be implied by ans
	Max C = 29 to 31.5	A1 3	Answer within range, no working, M1M1A1 32 without working, sc B1
V	LQ = 25.5-26.5 or UQ = 34-35.5 IQR = 8-10	M1 A1	M1 for one correct quartile dep \geq 1 correct quartile or no working
	(German) more spread	B1ft 3	or less consistent, less uniform, less similar, more varied, more variable, greater variance, more spaced apart, further apart ft their IQR; must be consistent with IQR
		0	Correct comment with no working: MUAUB1
Total		9	

(Q1, June 2010)

13 (i)	38	B1	Reversed: B1B0	
ii	61 Paper 2	BI 2 B1	Indep of reason	Ans "Paper 1", ignore reason: B0B0 unless reversed in (i)
	Higher median or curve is to right	B1dep 2	or similar Higher average or mean or midpoint Paper 2: half \leq 61, cf paper 1: half \leq 38 Paper 1: more students scored lower marks (or lower than eg 40)	More scored higher mks Highest & lowest mks are higher For each cf, the corresponding mark is higher in p2. None get 0-10 Some get 100 Eg 25 scored > 69 in p1, cf 65 scored > 69 in p2 NOT Marks are higher NOT marks seem higher NOT everyone gets higher mks NOT Curve steeper Ignore irrelevant or incorrect SC: If reversed in (i): (ii) p1 because median higher B1B1ft
111	55, 25 73, 46 Paper 1 IQR = 30 Paper 2 IQR = 27 Suggestion correct or p2 less varied	M1 A1 A1 B1f indep 4	M1 one pair of quartiles p2 more consistent or less spread out Allow "p2 has smaller range (or smaller variance") if IQRs found "It" is less varied: assume p2: B1	Allow 55±1, 25±1 Not necessarily subtracted 73±1, 46±1 30±1 27±1 p1 more varied or more spread out or less consistent Little difference or similarly varied NOT p2 IQR smaller than p1 unless also says less varied oe If quartiles found but not IQRs: max M1A0A0B1 If no quartiles calculated can still score B1 Steeper curve alone M0A0A0B0
			physicsandmathstutor.com	If IQRs wrong, with p1 < p2, ft "suggestion wrong": B1f Ignore irrelevant or incorrect
iv	37 (± 3)	B2 2	B1 for 163 (± 3)	Not necessarily integer. B1 for 78-80 mks for min grade A on p2 SC: ans 105 – 110: B1 (from p1 10 mks hier instead of lower)
v	37.5	B1	сао	NOT eg 37.51
	28.2	B1 2	or sd the same	Ignore all working
Total		12		

(Q1, Jan 2011)

14 (i)	Method is either: Just $4 \div 3$ or $\frac{4}{3}$						
	or: Use of ratio of correct frequencies AND ratio of widths (correct or 4 and 2)						
	$5.6 \times \frac{4}{28} \times \frac{5}{3}$ or $0.8 \times \frac{5}{3}$		M1 for $5.6 \times \frac{4}{28} \times \frac{4}{2}$ or $0.8 \times \frac{4}{2}$	Correct calc'n using 5.6, 28, 4, 5, 3 oe: M2 Correct calc'n using 5.6, 28, 4, 4, 2 oe: M1			
	or $(5.6 \div \frac{28}{5}) \times \frac{4}{3}$ or $\frac{4}{3}$ or $4 \div 3$ oe M2 = $1\frac{1}{3}$ or $\frac{4}{3}$ or 1.33 (3 sf) oe A1 3		or $(5.6 \div \frac{28}{4}) \times \frac{4}{2}$ or 0.8×2 oe (= 1.6) No wking, ans 1.3: M2A0	ie fully correct method: M2 or: incorrect class widths, otherwise correct method: M1 $\frac{4}{3}$ correctly obtained (or no wking) then further incorrect: M1M0A0			
			Ans 1.0. Check while but probably without	Use of ratio of widths OR freqs but not both: M0 eg $5.6 \times \frac{4}{28} (= 0.8)$ or $5.6 \times \frac{3}{5} (= 3.36)$: M0 $\frac{4}{28} = 2$: M0M0A0			
	25 or 26 or 25.5	B1	or 25 & 26	$\frac{1}{2}$ May be implied, eg by 21 or 22 or 21.5			
	Med is 21^{st} (or 22^{nd} or 21.5^{th}) in 31-35 class or " $25 - 4$ " Can be implied by calc'n	B1	or med in last ≈ 7 in class or $33 \approx 14^{\text{th}}$ in class or $33 \approx 18^{\text{th}}$ in whole set Can be implied by diagram	Calc'ns need not be correct but need to contain relevant figures for gaining B1B1			
	Med > 33 or "more than"	B1 3	indep	The " \approx " sign means ± 2			
				Alternative Method: $33 \approx 18^{th}$ valueB1More values above 33 than below oeB1Med > 33B1Ignore comment on skew			
			physicsandmathstutor.com	NB Use EITHER the main method OR the <u>Alternative Method</u> (above), not a mixture of the two. Choose the method that gives most marks.			
iii	\geq 3 mid-pts attempted	M1	seen or implied	Not nec'y correct values (29, 33, 40.5, 53)			
	$\Sigma fx \div 50 \text{ attempted} \qquad (= \frac{1819}{50}) = 36.38 \text{ or } 36.4 (3 \text{ sf})$	M1 A1	\geq 3 terms. or 36 with correct working	Allow on boundaries. Not class widths			
	$\Sigma f x^2$ attempted (= 68055.5)		\geq 3 terms.	Allow on boundaries. Not class widths (3364, 30492, 22963.5, 11236)			
	$\sqrt{\frac{68055.5}{50} - \left(\frac{1819}{50}\right)^2} \text{or } \sqrt{1361.11 - 36.38^2} \\ (= \sqrt{37.6056})$	M1	completely correct method except midpts & ft their mean, dep not $\sqrt{(neg)}$	Allow class widths for this mark only NB mark is not just for "– mean ² ", unlike q5(iii)			
	= 6.13 (3 sfs)	A1 6		$\Sigma(fx)^2$: M0M0A0 If no wking for Σfx^2 , check using their <i>x</i> and <i>f</i>			
	Alt for variance: $\Sigma f(x - \bar{x})^2$ (= 1880.28) M1 $\sqrt{1880.28}$ M1			If no wking or unclear wking: full mks for each correct ans			
	$\sqrt{\frac{50}{50}}$ M1 = 6.13 (3 sf) A1			for incorrect ans: $35.8 \le \mu \le 36.9$ M0M1A0 $6.0 \le \text{sd} \le 6.25$ M1M0A0			
iv T. ()	(a) Decrease (b) Increase (c) Same (d) Same	B1B1 B1B1 4	Ignore other, eg "slightly" or "probably"	Ignore any comments or reasons, even if incorrect			
Total		16					

(Q4, June 2011)

15	(i)	(a)	$(\frac{6}{3} =) 2$	B1 physicsand dmathstutor.com			
				[1]			
	(i)	(b)	$^{2}/_{6} \times 2$	M1	Allow $^{2}/_{5} \times 2$ or ans 0.8 for M1	Can be implied, eg $\frac{1}{3} = 0.3$, ans 0.6: M1A0	
			$=^{2}/_{3}$ oe or 0.667 or 0.67 or 0.7	A1[2]		Allow 0.66 or 0.666	
	(ii)		(3.5, 6) (0.5, 0) or (6.5, 15)	B1 B1 [2]	Ignore incorrect	(6, 3.5) AND (15, 6.5): B1	
	(iii)	(a)	$\frac{\Sigma xf}{2}$	M1	Allow x within classes, incl end pts	\geq 2 non-zero terms correct ft their x	
			$= 5.43 (3 \text{ sf}) \qquad \text{or} \frac{114}{21} \text{ or } \frac{38}{7} \text{ oe}$	A1	then ÷5: M0A0		
			$\frac{\Sigma x^2 f}{21}$ or $\frac{817.5}{21}$ or 38.9	M1	Allow x within class, incl end pt \div 5: M0	≥ 2 non-zero terms correct ft their x	
			- "5.43" ² or = 9.46 or 9.4592	physics M1	and mathstutor.com dep +ve result; done before $$; not $-(\overline{x}^2 \div)$	Calc 4 values of $(x - \bar{x})^2$ or $(x - \bar{x})^2 f$ or (11.8, 0.184, 6.61, 50) or (70.5, 1.65, 26.4, 100) or 199 M1 $\frac{\Sigma(x-\bar{x})^2 f}{21}$ fully correct method M1	
			$(\sqrt{9.4592})$ = 3.08 (3 sfs)	A1 [5]			
	(iii)	(b)	Actual values or exact hours unknown oe Don't have raw data. oe or measured to nearest hour oe	B1 [1]	or Data given in classes or grouped oe or Data evenly distributed in classes oe	Mid-points or medians or averages of class boundaries used oe	

(Q5, Jan 2012)

16	(i)	23	B1 [1]	Allow 22.5	NOT 22 (ie 3.5 th no) Correct ans is the 4 th or 3.75 th no.
	(ii)	0	B1	B1 for 30, 30	
		0	B1		
			[2]		
	(iii)	38 or 40		B1 for 38 or 39 seen	eg 38, 38.5, 39 B1B0
		39 40.75	B2	B2 for 38 & 39 seen alone, not in a range	(ie UQ = $\frac{3}{4} \times 14 = 10.5^{\text{m}}$ no.)
					'Between 39 & 46' B1B0
				Mixture, eg 38, 40.75 B1B0	$38 \le any letter < 40 B1B0$
		physicsa	andmath	stutor.com	SC 42 42.5 only = P1P0
				8 and 9(both): BIB0	SC 42, 42.5 Offry B1B0 (ie UQ = 11.5 th no.)
			[2]	40, 40.75, similar scheme as for 28, 20	Correct ans are the poss 11th or 11.25th nos
			[4]	40, 40.75. similar scheme as 101 58, 59	
	(iv)	Shows all the data or you can see all the values or		any implication of all the data or the	NOT
	(1)	You can see the actual/exact/indiv		actual numbers/values/results or similar	Shows the spread/skew/trend
		numbers/values/results		eg Can compare each indiv result	Any comment on skew
				Easier to see the numbers	You can see the actual frequ's
		No data is lost oe			Easier to compare sets of data
					Shows more info or more data
		Shows the shape of the distribution oe			Easier to read off the data
				eg can <u>find</u> frequencies	
		Can perform calculations of your choice (eg mean)			Ignore all other
		Shows which group (or class, NOT value) has the	B1	No mks for ans to (y) given in (iy) unless	
		highest frequency (or is the mode) oe	[1]	labelled as (v)	
	(v)	Shows the median or it's easier to see the median		eg Shows mean and quartiles B1	NOT
		(or quartiles or IQR)	B1	Shows range and median B1	Shows the spread/skew/trend
		It can measure the middle 50% easily	[1]		Can see data in diag form
				No mks for ans to (v) given in (iv) unless	Shows max or min or range
				labelled as (v)	Easier to compare sets of data
					Not affected by outliers
				Ignore all other	Easy to see outliers
					Shows s.d. or shows mean
L					Can see important data items/measures

(Q3, June 2012)